Although often overlooked, the insulation of the floor is important to reduce heat exchange between the ground and the building. In addition, it is important to mention that the choice of wall or floor covering will influence the perception of temperature by the occupants.
Windows and Doors
Glass in the windows and facades can allow solar radiation to enter the environment, but can also conserve the heat produced by the occupants, the heating systems inside the building, or allow the heat to be evacuated, depending on the type of building. In short, the control of solar radiation can be summarized in [2]:
- Admit or block natural light;
- Admit or block solar heat;
- Allow or block heat losses from the interior;
- Allow visual contact between interior and exterior.
For the study of the behavior of transparent closures, it is important to consider short waves and long waves. Short waves are visible and infrared. Long waves are infrared radiation emitted by heated bodies. The key is to find a good balance between the window's ability to reduce heat loss (u-value) versus its ability to increase or reduce solar heat gain. At this moment, the G-value (Solar Factor) is important, which is nothing more than the percentage of solar radiation that hits the glass and is transmitted directly and indirectly to the environment. A G-value of 1.0 represents the total transmittance of all solar radiation, while 0.0 represents a window without solar energy transmission. That is, in cold climates, a higher "g-value" helps to provide more useful solar gains and limit heating needs. In hot climate countries, a lower "g-value" helps control unnecessary solar gain to limit heating needs. In the figure below we show the operation of some types of glass.
Successful decisions influence the living conditions of the occupants, and each material can play a role within a general design strategy. The final specification should not only optimize power consumption, but also provide comfort to the user, that is why it is so important that architects know a little about the theory behind the phenomena and how the characteristics of the specified materials will influence the performance of the building in all its complexity.
References
[1] Wargorcki P (ed), Seppänen O (ed), Andersson J, Boerstra A, Clements-Croome D, Fitzner K, Hanssen SO (2006) REHVA Guidebook: Indoor Climate and Productivity In Offices. Lan L. Wargocki P. Wyon DP. Lian Z. (2011) Effects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses, and human performance.
[2] Lamberts, Dutra, Pereira (2014). Eficiência Energética na Arquitetura. Available at this link.